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We have numerically studied chemotactic aggregation of microorganisms by introducing a model consisting
of elements with intracellular dynamics, random walks with a state-dependent turnover rate, and secretion of
attractant. Three phases with and without aggregation, as well as partial aggregation, were obtained as to the
diffusion and degradation rates of the attractant, and conditions for cellular aggregation were analyzed. The
size of aggregated clusters was shown to be independent of cell density, as is consistent with experiment.
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Chemotaxis is a ubiquitous phenomenon in microorgan-
isms, and has attracted much attention both from the experi-
mental and theoretical sides �1–5�. The external concentra-
tion of signal molecules is interpreted by an intracellular
signal transduction network, which changes the motility of
the cell, so that it moves toward a region with a higher con-
centration of the attractive signal molecule �3�. The signal
pathways governing chemotaxis have been revealed experi-
mentally �6�. The turnover rate for the random walk is modu-
lated by the signal concentration toward the directed motion
on average in Escherichia coli �7,8� and several other micro-
organisms as well. From experiments on Paramecium,
Oosawa and Nakaoka proposed a condition for chemotaxis,
which states that the time scale of tumbling must be smaller
than that of adaptation and greater than that of sensing �1�.
By using a simplified model for internal signal transduction
and random turnover, we have recently confirmed that the
condition is valid for a variety of environments and for both
short- and long-term behavior by suitable renormalization of
the parameters for the time scale �9�.

Just as the chemotaxis of a single microorganism is of
interest, the collective chemotaxis of microorganisms inter-
acting with each other is also of interest �10,11�. For ex-
ample, E. coli aggregate to form a cluster by using chemot-
axis �12� or sometimes generate complex patterns �13�. The
aggregation is spontaneous, the result of chemotaxis toward
a chemical that is secreted by the bacteria themselves. Re-
cently, Mittal et al. studied this chemotactic aggregation and
found that the size of the bacterial cluster is independent of
the number of bacteria therein. They also performed some
analysis by imposing the localized signal pattern in advance
�12�. However, such a concentrated signal pattern is gener-
ated by the aggregating cells themselves, and thus it is es-
sential to obtain a self-consistent condition between the bac-
terial distribution and the signal field to allow for
chemotactic aggregation. In the present paper, we will study
a simple model of elements that show chemotaxis and se-
crete signal molecules, in order to obtain the conditions for
chemotactic aggregation. Dependence of the cluster size on
the bacterial number will also be examined.

Our model consists of cells with internal chemical reac-
tions showing response to and adaptation against the signal
molecule �14�; the turnover rate of the random walk of cells
depends on the internal chemical state, while the speed of

motion is fixed at vspeed for simplicity. Signal molecules are
secreted from the cells into the medium, become diffused,
and are degraded. The intracellular process for chemical con-
centration variables cu and cv is based on �9,15�. These
chemicals respond to the external signal concentration S, and
the intracellular adaptive dynamics is represented by

dcu

dt
=

S − �cu + cv�
�

,
dcv

dt
=

S − cv

�
. �1�

Following the increase �decrease� in the signal concentra-
tion S, cu increases �decreases� from its steady-state value
�c

u
*=0; the concentration here is defined as the deviation

from the steady-state value so that it can be negative�, but
after some time span it returns to the original value c

u
*. The

time scale for the response is defined by �s, while that for the
relaxation to the original value �i.e., adaptation� is defined by
�a.

Following the experimental result �7,8�, we set the tum-
bling rate to become smaller when cu�c

u
* and larger when

cu�c
u
*. With the average tumbling time interval �* and the

speed vspeed, we set the tumbling probability �per unit time�
as

Ptmb�cu� =
1.0 − 0.5 tanh����cu − c

u
*��

�*
. �2�

The tumbling frequency decreases �increases� as S increases
�decreases�. Unless otherwise mentioned we choose ��

=1000.0, so that the Ptmb�cu� exhibits a threshold behavior.
Although the tumbling occurs randomly, this simple model
can show chemotaxis: i.e., cells move toward an attractant-
rich area under the condition �s��*��a, which we term the
Oosawa condition. �The response time �s and adaptation time
�a need to be properly rescaled depending on the profile of
signal concentration �9��.

Now we consider the process of secretion of signal mol-
ecules S by the cells, to consider the spontaneous chemotac-
tic aggregation. The chemical is assumed to be secreted con-
tinually with a constant rate 	 from each cell at its position
pi�t�, diffuses through the space with the diffusion coefficient
Ds, and is degraded at the rate 
. For simplicity, we assume
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that 	, Ds, and 
 are constant. According to the above as-
sumptions, the time evolution of the signal concentration
S�x , t� is given by

�S�x,t�
�t

= 	 �
i

Ncell

�„x − pi�t�… + Ds
�2S�x,t�

�x2 − 
S�x,t� . �3�

When cells are distributed homogeneously in space, the
signal concentration approaches a homogeneous steady state
S*=	� /
 with � density of cells Ncell /L, Ncell as the number
of cells and L as the system size. By scaling properly, we can
fix the value of 	 by transforming the parameters 
←
 /	
and Ds←Ds /	.

In our model, the concentration pattern of the signal
chemical changes over time, influenced by the configuration
of cells. On the other hand, cells move according to the sig-
nal pattern. Cells regulate the signal pattern, which controls
the cells’ motion. Chemotactic aggregation is possible, when
a stationary self-consistent solution between cells’ motion
and the time evolution of the signal pattern is realized.

At a suitable spatiotemporal scale, it would be possible to
make coarse-grained continuum model on cell density and
signal concentration, if their spacial variation is sufficiently
smooth and each cell’s adaptation dynamics can be averaged
out. Indeed, a partial differential equation for cell density and
signal concentration is derived �15,16�, which agrees with
the so-called Keller-Segel model �17� in a form often taken
as a prototype, originally introduced for the study of chemo-
tactic aggregation of amoeba �18�. By denoting the cell den-
sity in space as N�x , t�, the derived equation is written as

�N

�t
= − 
� · �N�S� + Dn�

2N ,

�S

�t
= 	N − 
S + Ds�

2S , �4�

where 
 represents the mobility of the cell against the signal
gradient, and Dn is the diffusion of cells due to their random
walk. In this continuum limit, cells are assumed to show
directed motion even at any slight gradient in the signal
chemical. From a straightforward linear stability analysis, it
is shown that the Keller-Segel model has a steady uniform
solution under the condition of 
�
c=	
� /Dn. In the one-
dimensional case, Childress and Percus obtained a nonuni-
form steady solution with concentrated cell density for 

�
c, which represents the aggregated state �19�.

Instead of studying Eq. �4�, we consider the cell model in
one-dimensional space, without taking a continuum limit,
and study the conditions for chemotactic aggregation, in par-
ticular dependence on Ds and 
. The parameters for intracel-
lular dynamics, i.e., � ,� ,�*, are fixed so that they satisfy the
Oosawa condition after renormalization of the parameters
given by �20�. Although we present simulations of the one-
dimensional case only, the preliminary results seem to sug-
gest that the basic results, such as the conditions for aggre-
gation and the cluster size, are applicable for the two-
dimensional case �21�, as adopted experimentally.

By fixing the parameter values of the intracellular pro-
cess, we studied the temporal evolution of distribution by
changing the parameter values Ds and 
, and found three
distinct types of behavior, i.e., aggregation �A�, homoge-
neous distribution �H�, and partial aggregation �P�, as shown
in Fig. 1.

At the aggregation phase, cells aggregate into a single
cluster, which is localized in space and stable in time. This
single cluster is formed irrespective of the initial distribution
of cells. At the partial-aggregation phase, cells aggregate to
form a cluster for some time span, but then this cluster col-
lapses so that cells are broadly scattered until they aggregate
again. Intermittent aggregation and collapse is repeated. At
the homogeneous phase, cells are distributed uniformly over
the space. Tiny fluctuations in cell density are evident from
time to time, but on the average the density is uniform in
space.

To characterize these behaviors, we computed the follow-
ing two quantities: dA, which characterizes the average spa-
tial inhomogeneity of cells at a particular time, and dV, which
characterizes the temporal variation of cell aggregation.
These are measured from the average cell-cell distance at
each time

d�t� =� 1

Ncell�Ncell − 1� �
i,j

Ncell

�pi�t� − pj�t��2. �5�

Then, dA is defined by the temporal average of d�t� and dV by
its temporal variance. The three phases are characterized by
�A� dA�dA

uni, dV�0; �P� dA�dA
uni, dV�0; and �H� dA

�dA
uni, dV�0, where dA

uni is the value when cells are uni-
formly distributed �22�. The parameter dependence of these
quantities is plotted in Fig. 2, from which the phase diagram
is obtained. The diagram consists of four regions: i.e., aggre-
gation �A�, partial aggregation �P�, and two regions of ho-
mogeneous phases �H1,H2�. Now, we discuss the transitions
among these phases.

In the Keller-Segel model, the boundary is given by 

=
c, beyond which the uniform solution of cell density and
signal concentration is stable. This boundary line agrees with
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FIG. 1. �Color online� Three characteristic behaviors of cells.
The time evolution of the density distribution of cells is plotted. The
distribution is computed by averaging over 1000 time units. Param-
eters are commonly set as �=5.0, �=50.0, �*=70.0, 	=0.0005,
Ncell=100, and L=3000, while Ds and 
 are chosen to be �A� Ds

=300, 
=0.002, �P� Ds=0.1, 
=0.002, and �H� Ds=300, 
=0.1.
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that separating the H1 phase and the other three phases in
our model. In fact, in H1, the signal degradation rate is too
large to keep a sufficient signal amount for cells to detect.
Since the aggregation cluster is always stable under 
�
c in
the Keller-Segel model, the P and H2 phases are a result of
cell dynamics uncovered by the continuum limit.

The boundary between A and P is given by the straight
line of 
�DS. Considering Eq. �3�, the spatial scale for a
signal molecule to diffuse within its lifetime ��s� is given by
�Ds /
. Each cell has to respond to the signal change within
this spatial scale. Now, we define the spatial scale for the
cell’s motility �n as the average length a cell moves before it
tumbles after it passes the central top of the signal field. This
is estimated as follows. The cell’s response against the
change in signal concentration requires the time delay of �s.
Up to this time scale, the tumbling frequency does not
change and cells seldom tumble. Since the tumbling prob-
ability is given by 1 /�* per unit time, cells show diffusion
going straight for the time span of �*, on the average. Hence,
before the response to the signal the cells travel with the
scale �n�vspeed��s+�2�*� on average �23�.

For a cell to respond to the change, the spatial scale of the
signal change should be larger than the average length of the
cell motion before response. Thus, the condition �s��n is
imposed. This gives the boundary between the A and P
phases in Fig. 2, while we have explicitly confirmed the
relationship between �s and �*, as shown in Fig. 3.

When the aggregation condition in the continuum model
�
�
c� is satisfied, but �s��n, the signal field once formed
cannot trap cells within, and they wander out so that the
original cluster is destabilized. This leads to intermittent for-
mation and collapse of clusters. This is nothing but the be-
havior in the partial aggregation phase. Note that in the con-
tinuous Keller-Segel model, there is always a drift in the cell

motion towards a region with higher signal concentration,
and the P phase does not exist. By considering each cell as a
discrete element with response by internal dynamics, the in-
stability of the aggregated cluster under �s��n is intro-
duced.

The aggregated cluster becomes unstable at large Ds, and
chemotactic aggregation is not possible at the H2 phase, in
contrast to the Keller-Segel model. As the diffusion constant
is larger, the gradient of the signal concentration pattern is
smaller. If a cell can respond to any small signal gradient, as
assumed in the continuum model, cells can aggregate even
for any large Ds. On the other hand, in the present model of
intracellular dynamics, there exists a minimum value of the
gradient in signal concentration required for a cell to re-
spond. Indeed, this value depends on the sharpness of the
change of tumbling frequency against cu, i.e., the value �� in
Eq. �2�. As long as �� is finite, there exists minimum slope,
which gives a maximum value of Ds to make aggregation
possible. Thus, the H2 phase exists as long as �� is finite.

Finally, we study the dependence of the cluster size upon
the number of cells at the aggregation phase. As plotted in
Fig. 4, the cluster size �computed by dA� is independent of
the number of cells, as long as it is large enough to form a
stable cluster �in the figure, the number is about 50�.

Even when the cell number is large, the cellular density in
the cluster is sufficiently low �0.01 �m2 and a single bacte-
rium is about 2�3 �m in length �12��, compared with the
colony pattern, and so cells do not collide with each other
and move independently. Owing to this independency, the
cluster size is determined by the length beyond which the
cell returns to the original cluster, given by �n, which is
independent of the number of cells. In fact, Mittal et al.
reported that the size of formed bacterial cluster is indepen-
dent of the number of bacteria contained in it �12�. Our nu-
merical result agrees with their experiment.

In the present paper, we have obtained conditions for
chemotactic aggregation. One is the condition for degrada-
tion of attractant in the medium, given by 
�
c, which is
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FIG. 2. �Color online� Phase diagram with regards to the diffu-
sion constant of signal chemical Ds �abscissa axis� and its degrada-
tion rate 
 �ordinate axis�. Density plots of dA �upper� and dV

�lower� are shown. Four phases, H1, P, A, and H2, were obtained
from these values. Parameters other than Ds and 
 are identical as
adopted in Fig. 1. The values dA and dV are computed from the
average of 700 000 to 1 000 000 time steps, by starting from a ho-
mogeneous distribution.

FIG. 3. �Color online� Phase diagram of aggregation and partial
aggregation phases, with regards to the cellular tumbling time scale
�* �abscissa axis� and the parameter �s=�Ds /
 �ordinate axis�. The
symbol � represents the aggregation phase and + the partial aggre-
gation phase. Fixing �=1 /30 we set L=3000 �for �*�100�, L
=6000 �for 100��*�400�, L=9000 �for 400��*�, while other
parameter values are identical with those adopted in Fig. 2. The
dashed line represents �n �see the text�.
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also derived from the continuum limit, Keller-Segel model.
The other concerns the inequality between the diffusion scale
of the signal molecule within its lifetime and the motility
scale of the random walk of cells, �s��n. This latter condi-

tion, in addition to the condition for diffusion constant of
signal molecule to be detected by the signal transduction, is
not obtained in the continuum limit model. These conditions,
as well as the Oosawa condition for chemotaxis, are general,
and can be tested experimentally by varying the nature of the
medium and signal molecules and by adopting mutants. As
the cluster size constancy against cell density agrees with
experimental data, experimental verifications of the predicted
phases will be promising. In particular, partial aggregation
may underlie intermittent expansion of cellular aggregates
�24�.

In the present model, the secretion of attractant from cells
is independent of the intracellular state. It will be an impor-
tant future issue to consider state-dependent secretion of
chemicals and/or richer intracellular dynamics, to find com-
plex spatiotemporal patterns �13� as well as differentiation of
intracellular states �24�.
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FIG. 4. �Color online� Dependence of the cluster size �estimated
by dA� on the number of cells. Parameters are 
=0.002, Ds=200,
and others are identical as adopted in Fig. 1. The cluster size is
estimated by dA, computed by the averages from 70 000 to 80 000
�*�, from 80 000 to 90 000 �+�, and from 90 000 to 100 000 ���.
Values from three temporal regions are computed to check the sta-
bility of the aggregated cluster.
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